Usage
# S3 method for flowSet
unnest(
data,
cols,
...,
keep_empty = FALSE,
ptype = NULL,
names_sep = NULL,
names_repair = "check_unique"
)
Value
depending on the degree of unnest-ing. Note that unnest-ing and
ungrouping a flowSet
are equivalent.
Examples
my_flowset <- simulate_cytometry_data()$flowset
my_flowset |>
tidyr::unnest(cols = c(patient, cell_type))
#> flowFrame object 'tidyFlowCore_id_1'
#> with 500 cells and 13 observables:
#> name desc range minRange maxRange
#> $P1 feature_1 feature_1 101 0 100
#> $P2 feature_2 feature_2 101 0 100
#> $P3 feature_3 feature_3 101 0 100
#> $P4 feature_4 feature_4 101 0 100
#> $P5 feature_5 feature_5 101 0 100
#> ... ... ... ... ... ...
#> $P9 feature_9 feature_9 101 0 100
#> $P10 feature_10 feature_10 101 0 100
#> $P11 patient patient 4 0 3
#> $P12 cell_type cell_type 3 0 2
#> $P13 .tidyFlowCore_name .tidyFlowCore_name 6 0 5
#> 110 keywords are stored in the 'description' slot
my_flowset |>
tidyr::unnest(cols = patient)
#> A flowSet with 2 experiments.
#>
#> column names(12): feature_1 feature_2 ... patient .tidyFlowCore_name
#>