Skip to contents

Often, clustering single-cell data to identify communities of cells with shared characteristics is a major goal of high-dimensional cytometry data analysis.

To do this, tidytof provides the tof_cluster() verb. Several clustering methods are implemented in tidytof, including the following:

Each of these methods are wrapped by tof_cluster().

Clustering with tof_cluster()

To demonstrate, we can apply the PhenoGraph clustering algorithm to tidytof’s built-in phenograph_data. Note that phenograph_data contains 3000 total cells (1000 each from 3 clusters identified in the original PhenoGraph publication). For demonstration purposes, we also metacluster our PhenoGraph clusters using k-means clustering.

data(phenograph_data)

set.seed(203L)

phenograph_clusters <-
    phenograph_data |>
    tof_preprocess() |>
    tof_cluster(
        cluster_cols = starts_with("cd"),
        num_neighbors = 50L,
        distance_function = "cosine",
        method = "phenograph"
    ) |>
    tof_metacluster(
        cluster_col = .phenograph_cluster,
        metacluster_cols = starts_with("cd"),
        num_metaclusters = 3L,
        method = "kmeans"
    )

phenograph_clusters |>
    dplyr::select(sample_name, .phenograph_cluster, .kmeans_metacluster) |>
    head()
#> # A tibble: 6 × 3
#>   sample_name            .phenograph_cluster .kmeans_metacluster
#>   <chr>                  <chr>               <chr>              
#> 1 H1_PhenoGraph_cluster1 6                   2                  
#> 2 H1_PhenoGraph_cluster1 1                   2                  
#> 3 H1_PhenoGraph_cluster1 6                   2                  
#> 4 H1_PhenoGraph_cluster1 6                   2                  
#> 5 H1_PhenoGraph_cluster1 6                   2                  
#> 6 H1_PhenoGraph_cluster1 6                   2

The outputs of both tof_cluster() and tof_metacluster() are a tof_tbl identical to the input tibble, but now with the addition of an additional column (in this case, “.phenograph_cluster” and “.kmeans_metacluster”) that encodes the cluster id for each cell in the input tof_tbl. Note that all output columns added to a tibble or tof_tbl by tidytof begin with a full-stop (“.”) to reduce the likelihood of collisions with existing column names.

Because the output of tof_cluster is a tof_tbl, we can use dplyr’s count method to assess the accuracy of our clustering procedure compared to the original clustering from the PhenoGraph paper.

phenograph_clusters |>
    dplyr::count(phenograph_cluster, .kmeans_metacluster, sort = TRUE)
#> # A tibble: 4 × 3
#>   phenograph_cluster .kmeans_metacluster     n
#>   <chr>              <chr>               <int>
#> 1 cluster2           3                    1000
#> 2 cluster3           1                    1000
#> 3 cluster1           2                     995
#> 4 cluster1           1                       5

Here, we can see that our clustering procedure groups most cells from the same PhenoGraph cluster with one another (with a small number of mistakes).

To change which clustering algorithm tof_cluster uses, alter the method flag.

# use the kmeans algorithm
phenograph_data |>
    tof_preprocess() |>
    tof_cluster(
        cluster_cols = contains("cd"),
        method = "kmeans"
    )

# use the flowsom algorithm
phenograph_data |>
    tof_preprocess() |>
    tof_cluster(
        cluster_cols = contains("cd"),
        method = "flowsom"
    )

To change the columns used to compute the clusters, change the cluster_cols flag. And finally, if you want to return a one-column tibble that only includes the cluster labels (as opposed to the cluster labels added as a new column to the input tof_tbl), set augment to FALSE.

# will result in a tibble with only 1 column (the cluster labels)
phenograph_data |>
    tof_preprocess() |>
    tof_cluster(
        cluster_cols = contains("cd"),
        method = "kmeans",
        augment = FALSE
    ) |>
    head()
#> # A tibble: 6 × 1
#>   .kmeans_cluster
#>   <chr>          
#> 1 2              
#> 2 1              
#> 3 19             
#> 4 9              
#> 5 2              
#> 6 9

Session info

sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.4 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] dplyr_1.1.4    tidytof_0.99.8
#> 
#> loaded via a namespace (and not attached):
#>   [1] tidyselect_1.2.1    viridisLite_0.4.2   timeDate_4032.109  
#>   [4] farver_2.1.2        viridis_0.6.5       ggraph_2.2.1       
#>   [7] fastmap_1.2.0       tweenr_2.0.3        rpart_4.1.23       
#>  [10] digest_0.6.37       timechange_0.3.0    lifecycle_1.0.4    
#>  [13] yardstick_1.3.1     survival_3.6-4      magrittr_2.0.3     
#>  [16] compiler_4.4.1      rlang_1.1.4         sass_0.4.9         
#>  [19] tools_4.4.1         igraph_2.0.3        utf8_1.2.4         
#>  [22] yaml_2.3.10         data.table_1.15.4   knitr_1.48         
#>  [25] graphlayouts_1.1.1  htmlwidgets_1.6.4   withr_3.0.1        
#>  [28] purrr_1.0.2         RProtoBufLib_2.16.0 BiocGenerics_0.50.0
#>  [31] desc_1.4.3          nnet_7.3-19         grid_4.4.1         
#>  [34] polyclip_1.10-7     stats4_4.4.1        fansi_1.0.6        
#>  [37] RcppHNSW_0.6.0      future_1.34.0       colorspace_2.1-1   
#>  [40] ggplot2_3.5.1       globals_0.16.3      scales_1.3.0       
#>  [43] iterators_1.0.14    MASS_7.3-60.2       cli_3.6.3          
#>  [46] rmarkdown_2.28      ragg_1.3.2          generics_0.1.3     
#>  [49] future.apply_1.11.2 tzdb_0.4.0          cachem_1.1.0       
#>  [52] flowCore_2.16.0     ggforce_0.4.2       stringr_1.5.1      
#>  [55] splines_4.4.1       parallel_4.4.1      matrixStats_1.3.0  
#>  [58] vctrs_0.6.5         hardhat_1.4.0       glmnet_4.1-8       
#>  [61] Matrix_1.7-0        jsonlite_1.8.8      cytolib_2.16.0     
#>  [64] hms_1.1.3           S4Vectors_0.42.1    ggrepel_0.9.5      
#>  [67] listenv_0.9.1       systemfonts_1.1.0   foreach_1.5.2      
#>  [70] gower_1.0.1         tidyr_1.3.1         jquerylib_0.1.4    
#>  [73] recipes_1.1.0       parallelly_1.38.0   glue_1.7.0         
#>  [76] pkgdown_2.1.0       codetools_0.2-20    stringi_1.8.4      
#>  [79] lubridate_1.9.3     gtable_0.3.5        shape_1.4.6.1      
#>  [82] munsell_0.5.1       tibble_3.2.1        pillar_1.9.0       
#>  [85] htmltools_0.5.8.1   ipred_0.9-15        lava_1.8.0         
#>  [88] R6_2.5.1            textshaping_0.4.0   doParallel_1.0.17  
#>  [91] tidygraph_1.3.1     evaluate_0.24.0     Biobase_2.64.0     
#>  [94] lattice_0.22-6      readr_2.1.5         memoise_2.0.1      
#>  [97] bslib_0.8.0         class_7.3-22        Rcpp_1.0.13        
#> [100] prodlim_2024.06.25  gridExtra_2.3       xfun_0.47          
#> [103] fs_1.6.4            pkgconfig_2.0.3