Skip to contents

Often, high-dimensional cytometry experiments collect tens or hundreds or millions of cells in total, and it can be useful to downsample to a smaller, more computationally tractable number of cells - either for a final analysis or while developing code.

To do this, tidytof implements the tof_downsample() verb, which allows downsampling using 3 methods: downsampling to an integer number of cells, downsampling to a fixed proportion of the total number of input cells, or downsampling to a fixed cellular density in phenotypic space.

Downsampling with tof_downsample()

Using tidytof’s built-in dataset phenograph_data, we can see that the original size of the dataset is 1000 cells per cluster, or 3000 cells in total:

data(phenograph_data)

phenograph_data |>
    dplyr::count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1            1000
#> 2 cluster2            1000
#> 3 cluster3            1000

To randomly sample 200 cells per cluster, we can use tof_downsample() using the “constant” method:

phenograph_data |>
    # downsample
    tof_downsample(
        group_cols = phenograph_cluster,
        method = "constant",
        num_cells = 200
    ) |>
    # count the number of downsampled cells in each cluster
    count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1             200
#> 2 cluster2             200
#> 3 cluster3             200

Alternatively, if we wanted to sample 50% of the cells in each cluster, we could use the “prop” method:

phenograph_data |>
    # downsample
    tof_downsample(
        group_cols = phenograph_cluster,
        method = "prop",
        prop_cells = 0.5
    ) |>
    # count the number of downsampled cells in each cluster
    count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1             500
#> 2 cluster2             500
#> 3 cluster3             500

And finally, we might also be interested in taking a slightly different approach to downsampling that reduces the number of cells not to a fixed constant or proportion, but to a fixed density in phenotypic space. For example, the following scatterplot demonstrates that there are certain areas of phenotypic density in phenograph_data that contain more cells than others along the cd34/cd38 axes:

rescale_max <-
    function(x, to = c(0, 1), from = range(x, na.rm = TRUE)) {
        x / from[2] * to[2]
    }

phenograph_data |>
    # preprocess all numeric columns in the dataset
    tof_preprocess(undo_noise = FALSE) |>
    # plot
    ggplot(aes(x = cd34, y = cd38)) +
    geom_hex() +
    coord_fixed(ratio = 0.4) +
    scale_x_continuous(limits = c(NA, 1.5)) +
    scale_y_continuous(limits = c(NA, 4)) +
    scale_fill_viridis_c(
        labels = function(x) round(rescale_max(x), 2)
    ) +
    labs(
        fill = "relative density"
    )

To reduce the number of cells in our dataset until the local density around each cell in our dataset is relatively constant, we can use the “density” method of tof_downsample:

phenograph_data |>
    tof_preprocess(undo_noise = FALSE) |>
    tof_downsample(method = "density", density_cols = c(cd34, cd38)) |>
    # plot
    ggplot(aes(x = cd34, y = cd38)) +
    geom_hex() +
    coord_fixed(ratio = 0.4) +
    scale_x_continuous(limits = c(NA, 1.5)) +
    scale_y_continuous(limits = c(NA, 4)) +
    scale_fill_viridis_c(
        labels = function(x) round(rescale_max(x), 2)
    ) +
    labs(
        fill = "relative density"
    )

Thus, we can see that the density after downsampling is more uniform (though not exactly uniform) across the range of cd34/cd38 values in phenograph_data.

Additional documentation

For more details, check out the documentation for the 3 underlying members of the tof_downsample_* function family (which are wrapped by tof_downsample):

  • tof_downsample_constant
  • tof_downsample_prop
  • tof_downsample_density

Session info

sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.4 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] ggplot2_3.5.1  dplyr_1.1.4    tidytof_0.99.8
#> 
#> loaded via a namespace (and not attached):
#>   [1] gridExtra_2.3       rlang_1.1.4         magrittr_2.0.3     
#>   [4] matrixStats_1.3.0   compiler_4.4.1      systemfonts_1.1.0  
#>   [7] vctrs_0.6.5         stringr_1.5.1       pkgconfig_2.0.3    
#>  [10] shape_1.4.6.1       fastmap_1.2.0       ggraph_2.2.1       
#>  [13] utf8_1.2.4          rmarkdown_2.28      prodlim_2024.06.25 
#>  [16] tzdb_0.4.0          ragg_1.3.2          purrr_1.0.2        
#>  [19] xfun_0.47           glmnet_4.1-8        cachem_1.1.0       
#>  [22] jsonlite_1.8.8      recipes_1.1.0       highr_0.11         
#>  [25] tweenr_2.0.3        parallel_4.4.1      R6_2.5.1           
#>  [28] bslib_0.8.0         stringi_1.8.4       parallelly_1.38.0  
#>  [31] rpart_4.1.23        lubridate_1.9.3     jquerylib_0.1.4    
#>  [34] Rcpp_1.0.13         iterators_1.0.14    knitr_1.48         
#>  [37] future.apply_1.11.2 readr_2.1.5         flowCore_2.16.0    
#>  [40] Matrix_1.7-0        splines_4.4.1       nnet_7.3-19        
#>  [43] igraph_2.0.3        timechange_0.3.0    tidyselect_1.2.1   
#>  [46] yaml_2.3.10         viridis_0.6.5       timeDate_4032.109  
#>  [49] doParallel_1.0.17   codetools_0.2-20    listenv_0.9.1      
#>  [52] lattice_0.22-6      tibble_3.2.1        Biobase_2.64.0     
#>  [55] withr_3.0.1         evaluate_0.24.0     future_1.34.0      
#>  [58] desc_1.4.3          survival_3.6-4      polyclip_1.10-7    
#>  [61] pillar_1.9.0        foreach_1.5.2       stats4_4.4.1       
#>  [64] generics_0.1.3      RcppHNSW_0.6.0      S4Vectors_0.42.1   
#>  [67] hms_1.1.3           munsell_0.5.1       scales_1.3.0       
#>  [70] globals_0.16.3      class_7.3-22        glue_1.7.0         
#>  [73] tools_4.4.1         data.table_1.15.4   gower_1.0.1        
#>  [76] fs_1.6.4            graphlayouts_1.1.1  tidygraph_1.3.1    
#>  [79] grid_4.4.1          yardstick_1.3.1     tidyr_1.3.1        
#>  [82] RProtoBufLib_2.16.0 ipred_0.9-15        colorspace_2.1-1   
#>  [85] ggforce_0.4.2       cli_3.6.3           textshaping_0.4.0  
#>  [88] fansi_1.0.6         cytolib_2.16.0      viridisLite_0.4.2  
#>  [91] lava_1.8.0          gtable_0.3.5        sass_0.4.9         
#>  [94] digest_0.6.37       BiocGenerics_0.50.0 ggrepel_0.9.5      
#>  [97] htmlwidgets_1.6.4   farver_2.1.2        memoise_2.0.1      
#> [100] htmltools_0.5.8.1   pkgdown_2.1.0       lifecycle_1.0.4    
#> [103] hardhat_1.4.0       MASS_7.3-60.2