Skip to contents

Get a `tof_model`'s training data

Usage

tof_get_model_training_data(tof_model)

Arguments

tof_model

A tof_model

Value

A tibble of (non-preprocessed) training data used to fit the model

Examples

feature_tibble <-
    dplyr::tibble(
        sample = as.character(1:100),
        cd45 = runif(n = 100),
        pstat5 = runif(n = 100),
        cd34 = runif(n = 100),
        outcome = (3 * cd45) + (4 * pstat5) + rnorm(100),
        class =
            as.factor(
                dplyr::if_else(outcome > median(outcome), "class1", "class2")
            ),
        multiclass =
            as.factor(
                c(rep("class1", 30), rep("class2", 30), rep("class3", 40))
            ),
        event = c(rep(0, times = 30), rep(1, times = 70)),
        time_to_event = rnorm(n = 100, mean = 10, sd = 2)
    )

split_data <- tof_split_data(feature_tibble, split_method = "simple")

# train a regression model
regression_model <-
    tof_train_model(
        split_data = split_data,
        predictor_cols = c(cd45, pstat5, cd34),
        response_col = outcome,
        model_type = "linear"
    )

tof_get_model_training_data(regression_model)
#> # A tibble: 100 × 9
#>    sample    cd45 pstat5   cd34 outcome class  multiclass event time_to_event
#>    <chr>    <dbl>  <dbl>  <dbl>   <dbl> <fct>  <fct>      <dbl>         <dbl>
#>  1 43     0.897   0.923  0.539    7.94  class1 class2         1          9.40
#>  2 80     0.240   0.518  0.0689   5.32  class1 class3         1         11.8 
#>  3 68     0.966   0.0931 0.388    3.12  class2 class3         1          8.53
#>  4 77     0.221   0.409  0.167    3.81  class1 class3         1         10.4 
#>  5 90     0.00685 0.147  0.125    0.216 class2 class3         1          7.29
#>  6 3      0.658   0.0921 0.456    2.91  class2 class1         0          7.66
#>  7 17     0.675   0.613  0.308    4.75  class1 class1         0          9.83
#>  8 38     0.676   0.711  0.588    6.80  class1 class2         1         10.2 
#>  9 81     0.307   0.561  0.727    4.04  class1 class3         1          8.87
#> 10 42     0.290   0.641  0.732    4.59  class1 class2         1         11.0 
#> # ℹ 90 more rows