Skip to contents

Get a `tof_model`'s processed outcome variable matrix (for glmnet)

Usage

tof_get_model_y(tof_model)

Arguments

tof_model

A tof_model

Value

A y value formatted for glmnet

Examples

feature_tibble <-
    dplyr::tibble(
        sample = as.character(1:100),
        cd45 = runif(n = 100),
        pstat5 = runif(n = 100),
        cd34 = runif(n = 100),
        outcome = (3 * cd45) + (4 * pstat5) + rnorm(100),
        class =
            as.factor(
                dplyr::if_else(outcome > median(outcome), "class1", "class2")
            ),
        multiclass =
            as.factor(
                c(rep("class1", 30), rep("class2", 30), rep("class3", 40))
            ),
        event = c(rep(0, times = 30), rep(1, times = 70)),
        time_to_event = rnorm(n = 100, mean = 10, sd = 2)
    )

split_data <- tof_split_data(feature_tibble, split_method = "simple")

# train a regression model
regression_model <-
    tof_train_model(
        split_data = split_data,
        predictor_cols = c(cd45, pstat5, cd34),
        response_col = outcome,
        model_type = "linear"
    )

tof_get_model_y(regression_model)
#>   [1]  2.18131337  2.71618791  3.41674410  2.19873696  4.60698357  3.45640330
#>   [7]  4.52318725  7.12326360  1.08002714  4.24891165  2.49004649  3.04399719
#>  [13]  2.57156276  3.38719275  2.30103202  4.55961844  0.93419244  4.11649387
#>  [19]  4.92509667  5.25459536  5.74593523  0.70379981  5.28839839  3.65071043
#>  [25]  2.63893940  4.17427446  4.02775621  5.50829798  2.01307916  5.23982856
#>  [31]  5.40369864  3.09613212  4.16664916  2.80717349  4.49222674  2.69676189
#>  [37]  4.22035488  4.78183453  4.12370897  4.50140322  5.45155291  3.65110189
#>  [43]  2.06150909  2.08495268  3.27449472  2.88067453  4.41080465  0.49146365
#>  [49]  4.30077930  3.67331846  2.76116875  2.50709995  2.92769019  4.32836041
#>  [55]  5.08454992  2.45103350  1.94416598  5.38053521  1.51757669  3.99013660
#>  [61]  5.04894469  1.20700151  0.06217509  5.05942445  2.35217156  3.43782027
#>  [67]  0.48607583  1.84190021  1.48363474  1.85867812  3.09439600  3.60260380
#>  [73]  3.86377993  3.30276080  4.49705065  0.73738319  4.53241270  4.40932752
#>  [79]  5.04466729  5.54501484  0.85021428  4.53628988  1.60027551  4.47834839
#>  [85]  4.67356897 -0.39676503  3.75801020  2.75284593  4.95718501  6.19950991
#>  [91]  5.28985884  2.10256261  0.90173267  4.31308665  2.30004056  3.91640613
#>  [97]  2.11186677  2.58497399  3.09276303  6.90309895